
Counting Hamilton decompositions of oriented graphs

Asaf Ferber∗ Eoin Long† Benny Sudakov‡

Abstract

A Hamilton cycle in a directed graph G is a cycle that passes through every vertex of G. A

Hamilton decomposition of G is a partition of its edge set into disjoint Hamilton cycles. In the

late 60s Kelly conjectured that every regular tournament has a Hamilton decomposition. This

conjecture was recently settled for large tournaments by Kühn and Osthus [15], who proved more

generally that every r-regular n-vertex oriented graph G (without antiparallel edges) with r = cn

for some fixed c > 3/8 has a Hamilton decomposition, provided n = n(c) is sufficiently large. In

this paper we address the natural question of estimating the number of such decompositions of G

and show that this number is n(1−o(1))cn2

. In addition, we also obtain a new and much simpler

proof for the approximate version of Kelly’s conjecture.

1 Introduction

A Hamilton cycle in a graph or a directed graph G is a cycle passing through every vertex of G exactly

once, and a graph is Hamiltonian if it contains a Hamilton cycle. Hamiltonicity is one of the most

central notions in graph theory, and has been intensively studied by numerous researchers in recent

decades. The decision problem of whether a given graph contains a Hamilton cycle is known to be

NP-hard and in fact, already appears on Karp’s original list of 21 NP-hard problems [10]. Therefore,

it is important to find general sufficient conditions for Hamiltonicity (for a detailed discussion of this

topic we refer the interested reader to two surveys of Kühn and Osthus [13, 14]).

In this paper we discuss Hamiltonicity problems for directed graphs. A tournament Tn on n vertices

is an orientation of an n-vertex complete graph Kn. The tournament is regular if all in/outdegrees

are the same and equal (n − 1)/2. It is an easy exercise to show that every tournament contains a

Hamilton path (that is, a directed path passing through all the vertices). Moreover, one can further

show that a regular tournament contains a Hamilton cycle.

A tournament is a special case of a more general family of directed graphs, so called oriented graphs.

An oriented graph is a directed graph obtained by orienting the edges of a simple graph (that is, a graph

without loops or multiple edges). Given an oriented graph G, let δ+(G) be its minimum outdegree,

δ−(G) be its minimum indegree and let the minimum semi-degree δ0(G) be the minimum of δ+(G)

and δ−(G). A natural question, originally raised by Thomassen in the late 70s, asks to determine the

minimum semi-degree which ensures Hamiltonicity in the oriented setting. Following a long line of

research, Keevash, Kühn and Osthus [11] settled this problem, showing that δ0(G) ≥ d3n−4
8 e is enough
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to obtain a Hamilton cycle in any n-vertex oriented graph. A construction showing that this is tight

was obtained much earlier by Häggkvist [9].

Once Hamiltonicity of G has been established, it is natural to further ask whether G contains many

edge-disjoint Hamilton cycles or even a Hamilton decomposition. A Hamilton decomposition is a

collection of edge-disjoint Hamilton cycles covering all the edges of a graph. In the late 60s, Kelly

conjectured (see [14, 13] and their references) that every regular tournament has a Hamilton decom-

position. Kelly’s Conjecture has been studied extensively in recent decades, and quite recently was

settled for large tournaments in a remarkable tour de force by Kühn and Osthus [15]. In fact, Kühn

and Osthus [15] proved the following stronger statement for dense r-regular oriented graphs (that is,

oriented graphs with all in/outdegrees equal to r).

Theorem 1. Let ε > 0 and let n be a sufficiently large integer. Then, every r-regular oriented graph

G on n vertices with r ≥ 3n/8 + εn has a Hamilton decomposition.

The bound on r in this theorem is best possible up to the additive term of εn. Indeed, as we already

mentioned above, if r is smaller than 3n/8 then G may not even be Hamiltonian.

Counting various combinatorial objects has a long history in Discrete Mathematics and such problems

have been extensively studied. Motivated by Theorem 1, in this paper we consider the number of

distinct Hamilton decompositions of dense regular oriented graphs. One can obtain an upper bound

for this question by using the famous Minc conjecture, established by Brégman [3], which provides

an upper-bound on the permanent of a matrix A. Let Sn be the set of all permutations of the set

[n]. The permanent of an n× n matrix A is defined as per(A) =
∑

σ∈Sn

∏n
i=1Aiσ(i). Note that every

permutation σ ∈ Sn has a cycle representation which is unique up to the order of cycles. When A is a

0−1 adjacency matrix of an oriented graph (that is Aij = 1 iff ~ij ∈ E(G)), every non-zero summand in

the permanent is 1 and it corresponds to a collection of disjoint cycles covering all the vertices. Hence,

the permanent counts the number of such cycle factors and, in particular, gives an upper bound on

the number of Hamilton cycles in the corresponding graph. For an r-regular oriented graph G with

adjacency matrix A, where r is large, Brégman’s Theorem asserts that

per(A) ≤ (r!)n/r = (1− o(1))n(r/e)n.

Therefore, G has at most (1 − o(1))n(r/e)n Hamilton cycles. Note that upon removing the edges

of such a cycle from G, we are left with an (r − 1)-regular oriented graph G′. Again by Brégman’s

Theorem, G′ contains at most (1−o(1))n((r−1)/e)n distinct Hamilton cycles. Repeating this process

and taking the product of all these estimates, we deduce that G has at most(
(1 + o(1))

r

e2

)rn
Hamilton decompositions. When r is linear in n this bound is of the form n(1−o(1))rn.

Our first result gives a corresponding lower bound, which together with the above estimates determine

asymptotically the number of Hamilton decompositions of dense regular oriented graphs. It is worth

drawing attention to the fact that our result shows that all such graphs have roughly the same number

of Hamilton decompositions.

Theorem 2. Let c > 3/8 be a fixed constant, let ε > 0 be an arbitrary small constant, and let n be

a sufficiently large integer. Then, every cn-regular oriented graph G on n vertices contains at least

n(1−ε)cn2
distinct Hamilton decompositions.
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The main step in the proof of this theorem is to construct many almost Hamilton decompositions,

each of which can be further completed to a full decomposition. This is done by extending some ideas

from [6] and differs from the approach used in [15]. In particular, we obtain a new and much simpler

proof for the approximate version of Kelly’s conjecture, originally established by Kühn, Osthus and

Treglown in [17]. Furthermore, note that a Hamilton decomposition of a regular tournament also

gives a Hamilton decomposition of the underlying complete (undirected) graph. Therefore Theorem 2

implies that, for odd n, the n-vertex complete graph has n(1−o(1))n2/2 Hamilton decompositions. This

estimate, together with more general results concerning counting Hamilton decompositions of various

dense regular graphs, was recently obtained in [8].

Another natural problem studied in this paper concerns how many edge-disjoint Hamilton cycles one

can find in a given (not necessarily regular) oriented graph. Observe that if an oriented graph G

contains r edge-disjoint Hamilton cycles, then their union gives a spanning, r-regular subgraph of

G. We refer to such a subgraph as an r-factor of G. Given an oriented graph G, let reg(G) be the

maximal integer r for which G contains an r-factor. Clearly, G contain at most reg(G) edge-disjoint

Hamilton cycles. We propose the following conjecture which, if true, is best possible.

Conjecture 3. Let c > 3/8 be a fixed constant and let n be sufficiently large. Let G be an oriented

graph on n vertices with δ0(G) ≥ cn. Then, G contains reg(G) edge-disjoint Hamilton cycles.

Our second result gives supporting evidence for this conjecture, proving that such oriented graphs G

contain (1− o(1)) reg(G) edge-disjoint Hamilton cycles.

Theorem 4. Let c > 3/8 and ε > 0 be fixed constants and let n be sufficiently large. Let G be

an oriented graph on n vertices with δ0(G) ≥ cn. Then, G contains a collection of (1 − ε) reg(G)

edge-disjoint Hamilton cycles.

This theorem follows immediately from our proof of Theorem 2. For a regular tournament Theorem

4 implies an approximate version of Kelly’s Conjecture from [17].

Notation: Given an oriented graph G and v ∈ V (G), let N+
G (v) = {w ∈ V (G) : −→vw ∈ E(G)}

denote the out-neighbourhood of v in G and d+
G(v) = |N+

G (v)| denote the out-degree of v in G. Define

N−G (v) and d−G(v) similarly. Given a set W ⊂ V (G), let N+
G (v,W ) = N+

G (v) ∩W and let d+
G(v,W ) =

|N+
G (v,W )|. Similarly define N−G (v,W ) and d−G(v,W ). We omit the subscript G whenever there is no

risk of confusion. We also define δ+(G) := minv d
+(v), δ−(G) := minv d

−(v), ∆+(G) := maxv d
+(v),

∆−(G) := maxv d
−(v), and set δ0(G) = min{δ+(G), δ−(G)} and ∆0(G) = max{∆+(G),∆−(G)}. We

also write a± b to denote a value which lies in the interval [a− b, a+ b].

2 Proof outline

In this section we give a general overview of our proof strategy for Theorems 2 and 4. We only give

a ‘high level’ description; the exact details will appear in later sections. The proof method is similar

to that introduced in [6], although a number of new ideas are required in order extend from the

pseudorandom setting to the general case.

Let G be an n-vertex digraph with δ0(G) ≥ βn and let D denote an arbitrary d := reg(G)-factor of

G. Let us first aim to find one collection of ‘many’ edge-disjoint Hamilton cycles, without attempting
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to count the number of such collections. To do this, we will find edge-disjoint spanning subgraphs

H1, . . . ,Ht of G with the following properties:

1. t = logC(n), for some constant C > 0;

2. For each i, there is a partition V (Hi) = V (G) = Ui ∪Wi, with |Wi| � |Ui|;

3. For every i, the graph Di := Hi[Ui] is an almost regular subgraph of D, with degree roughly d/t;

4. Each vertex u ∈ Ui has many in and out-neighbours in the graph Hi to Wi;

5. δ0(Hi[Wi]) ≥ (1− o(1))β|Wi|.

The existence of such a collection is proven in Section 6 (see Lemma 27).

Given such a partition, we will describe how to find many edge-disjoint Hamilton cycles in each Hi.

This consists of two stages. In the first stage, contained in Section 5, we find (1 − o(1))d/t edge-

disjoint collections of paths from Di, with the property that each collection has few paths, and covers

all vertices of V (Di). These paths will be built from matchings. Concretely, we partition each set

V (Di) into b = logC
′
(n) sets V (Di) = V i

1 ∪ . . . ∪ V i
b , with

∣∣|V i
j1
| − |V i

j2
|
∣∣ ≤ 1 for all j1, j2 ∈ [b]. By

concentration inequalities, all in-/out-degrees in each Di[V
i
j , V

i
k ] are roughly d′ ≈ d/tb. Now, any

Hamilton path vi1 . . . vib of Kb corresponds to a b-partite subgraph of Di consisting of all the edges in
−→
D i[V

i
ij
, V i

ij+1
], j ∈ [b − 1]. Furthermore, by a result of Tillson [19], one can partition each Kb into b

edge-disjoint Hamilton paths, giving a partition of Di into b edge-disjoint subgraphs. Each collection

of paths will be taken from these subgraphs.

To see how this is achieved, fix a Hamilton path v1v2 . . . vb in Kb. Observe that if we are able to find

roughly d′ edge-disjoint perfect matchings in Bj :=
−→
D i[V

i
j , V

i
j+1] for all j ∈ [b − 1], by combining a

matching from each Bj we obtain roughly d′ edge-disjoint collections of |V i
1 | edge-disjoint paths, with

each collection covering all vertices of Di. Taking such collections for each of the b Hamilton paths

above, we find d′b ≈ d/t edge-disjoint collections of roughly |V i
1 | ≈ n/b edge-disjoint paths covering

V (Di).

Given such an idyllic situation, the second stage of the proof, contained in Section 4, aims to complete

each collection of paths above to a Hamilton cycle using edges from Hi adjacent to vertices in Wi. As

each collection consists of few paths, and as each vertex has ‘many’ neighbours in Wi in the graph Hi,

we can (essentially greedily) extend each collection to a collection of ≈ n/b vertex disjoint paths that

start and end in Wi, so that all paths are edge-disjoint. The final step completes each collection of

paths to a Hamilton cycle using edges from Wi. Provided β is large and the number of paths in each

collection (≈ n/b) is much smaller than |Wi|, this can be carried out using known results for dense

oriented graphs (see Section 3.3). In this way, we complete each collection of paths to a Hamilton

cycle. However care must be taken during this completion phase, so that Hi[Wi] does not become ‘too

sparse’, and there is some sensitivity in our choice of parameters (choices of b and t) as a result.

A difficulty, which was glossed over above, is that during the first stage as d′ is not that large and

the graphs Bj are not in general regular, it can be the case that Bj does not even contain a single

perfect matching, let alone d′ of them. To overcome this difficulty, we prove that each almost regular

bipartite graph has the ‘correct number’ of large (not necessarily complete) edge-disjoint matchings.

These slightly smaller matchings are sufficient to prove the theorem, as in this scenario we still have
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collections of not too many paths covering all the vertices of V (Di) (perhaps some paths consist of a

single vertex), although they present some extra technicalities, which are handled in Section 5. Note

also that, as we show each almost regular bipartite graph contains the ‘correct number’ of collections

of roughly d′ edge-disjoint large matchings, we not only get existence, but also a counting result from

our approach. In order to get a decomposition of G (when G is regular), we initially remove a carefully

chosen regular subgraph from G to obtain G′, apply the above procedure on G′ to obtain the ‘correct

number’ of approximate decompositions and then complete the decomposition using the remaining

edges and the graph we left outside. This is done using a celebrated result of Kühn and Osthus [15].

The rest of the details appear below.

3 Tools

In this section we have collected a number of tools to be used in proving our results.

3.1 Chernoff’s inequality

Throughout the paper we will make extensive use of the following well-known bound on the upper

and lower tails of the Binomial distribution, due to Chernoff (see Appendix A in [1]).

Lemma 5 (Chernoff’s inequality). Let X ∼ Bin(n, p) and let E(X) = µ. Then

• P[X < (1− a)µ] < e−a
2µ/2 for every a > 0;

• P[X > (1 + a)µ] < e−a
2µ/3 for every 0 < a < 3/2.

Remark 6. These bounds also hold when X is hypergeometrically distributed with mean µ.

We also need the following easy proposition:

Proposition 7. Let s,K,N ∈ N with s ≤ N and p = s/N . Let S be a set of size N . Suppose we select

random subsets U1, . . . , UK from S of order s, all choices independent. Then U = ∪i∈[K]Ui satisfies

E(|U |) = Np′ where p′ = 1− (1− p)K , and for t ≤ Np′ we have

P
(∣∣|U | − E(|U |)

∣∣ ≥ t) ≤ 2(N + 1)Ke−t
2/3Np′ .

Proof. Fixing an element s ∈ S, it appears in each Ui independently with probability p. Therefore,

the probability that s appears in U is p′ = 1 − (1 − p)K and by linearity of expectation we obtain

E(|U |) = Np′.

For the concentration bounds, select K random sets W1, . . . ,WK by including each element of S in

Wi with probability p, independently at random (that is, |Wi| is not necessarily of size Np for all i).

Setting W = ∪i∈[K]Wi we see that |W | is binomially distributed according to Bin(N, p′), and that

E(|W |) = E(|U |). Therefore, by Chernoff’s inequality we have

P
(∣∣|W | − E(|W |)

∣∣ > t
)
≤ 2e−t

2/3Np′ .
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Let E to denote the event “|Wi| = Np for all i ∈ [K]” and note that conditioned on E , the random

variable W has the same distribution as U . Therefore

P
(∣∣|U | − E(|U |)

∣∣ > t
)
· P(E) ≤ P

(∣∣|W | − E(|W |)
∣∣ > t

)
≤ 2e−t

2/3Np′ . (1)

It easy to see that P(|Wi| = m) is maximized when m = Np and therefore, by independence, we have

P(E) =
∏
i∈[K]

P(|Wi| = pn) ≥ (N + 1)−K .

Combined with (1) this completes the proof.

3.2 Perfect matchings in a bipartite graph

Here we present a number of results related to perfect matchings in bipartite graphs. The first result

is a criterion for the existence of r-factors (that is, spanning and r-regular subgraphs) in bipartite

graphs, due to Gale and Ryser (see [7], [18]).

Theorem 8. Let G = (A ∪ B,E) be a bipartite graph with |A| = |B| = m, and let r be an integer.

Then G contains an r-factor if and only if for all X ⊆ A and Y ⊆ B

eG(X,Y ) ≥ r(|X|+ |Y | −m).

Next we present Brégman’s Theorem which provides an upper bound for the number of perfect match-

ings in a bipartite graph based on its degrees (see e.g. [1] page 24).

Theorem 9. (Brégman’s Theorem) Let G = (A∪B,E) be a bipartite graph with |A| = |B|. Then the

number of perfect matchings in G is at most∏
a∈A

(dG(a)!)1/dG(a).

Remark 10. It will be useful for us to give an upper bound with respect to the maximum degree of G.

Suppose that |A| = |B| = m and let ∆ := ∆(G). Using Theorem 9 and Stirling’s approximation, one

obtains that the number of perfect matchings in G is at most

(∆!)m/∆ ≤ (8∆)m/∆
(

∆

e

)m
.

Lastly, we require the following result which provides a lower bound for the number of perfect matchings

in a regular bipartite graph. This result is known as the Van der Waerden Conjecture, and it was

proven by Egorychev [4], and independently by Falikman [5].

Theorem 11. (Van der Waerden’s Conjecture) Let G = (A∪B,E) be a d-regular bipartite graph with

both parts of size m. Then the number of perfect matchings in G is at least

dm
m!

mm
≥
(
d

e

)m
.
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3.3 Hamilton paths, cycles and absorbers

We make use of the following theorem of Keevash, Kühn and Osthus [11].

Theorem 12. Every n-vertex oriented graph G with δ0(G) ≥ (3n − 4)/8 contains a Hamilton cycle,

provided n is sufficiently large.

We also make use of the following related result of Kelly, Kühn and Osthus, which follows immediately

from the proof of the main theorem in [12].

Theorem 13. Let c > 3/8 be a constant and n be sufficiently large. Suppose that G is an oriented

graph on n vertices with δ0(G) ≥ cn, and let x, y ∈ V (G) be any two distinct vertices. Then there is

a Hamilton path in G with x as its starting point and y as its final point.

Before describing the next tool we need the following definition.

Definition 14. Given an n-vertex oriented graph G, a subgraph D ⊆ G is said to be a δ-absorber if,

for any given d-regular spanning subgraph T which is edge-disjoint from D with d ≤ δn, the oriented

graph D ∪ T has a Hamilton decomposition.

The following result is the main ingredient in the seminal paper of Kühn and Osthus in which they

solved Kelly’s conjecture [15]. Roughly speaking, the theorem states that there are δ-absorbers for

arbitrarily small δ in any sufficiently large regular oriented graph. The result follows from Lemma 3.4

in [16].

Theorem 15. Let ε > 0 and c > 3/8 be two constants. Then, there is δ > 0 such that for sufficiently

large n the following holds. Suppose that G is an n-vertex oriented graph with δ0(G) ≥ cn. Then G

contains a δ-absorber A as an oriented subgraph, where A is r-regular with r ≤ εn.

4 Almost Hamilton decompositions of special oriented graphs

Our aim in this section is to show how certain special oriented graphs can be almost decomposed into

Hamilton cycles.

4.1 Completing one Hamilton cycle

The following simple lemma will allow us to complete disjoint directed paths into a Hamilton cycle.

Lemma 16. Let c > 3/8 and a,N ∈ N with a� N
logN and N sufficiently large. Let F be an oriented

graph with |V (F )| = N and δ0(F ) ≥ cN . Let {Pi}i∈[a] be a collection of vertex disjoint oriented paths

contained in an oriented graph G, where V (F ) ∩ V (G) = ∅. Let xi and yi denote the first and last

vertices of Pi, for each i, and assume that d−(xi, V (F )), d+(yi, V (F )) ≥ 2a. Then there is a cycle C

with the following properties:

1. Each Pi appears as a segment of C;

2. V (F ) ⊆ V (C).
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Proof of Lemma 16. For each i ∈ [a] select ti ∈ N−(xi, V (F )) and si ∈ N+(yi, V (F )) such that all 2a

vertices are distinct. Note that this is possible as d−(xi, V (F )), d+(yi, V (F )) ≥ 2a. Let S = {si : i ∈
[a]}, T = {ti : i ∈ [a]} and W = V (F ).

Let us create a partition of W into a sets, W1, . . . ,Wa, by assigning si and ti+1 to Wi for all i ∈ [a]

(taking a + 1 to be 1) and by randomly assigning each vertex v ∈ W \ (S ∪ T ) to one of the sets

uniformly and independently at random. Now, let ε0 = (c− 3/8)/4 > 0 and consider the events:

A = “|Wi| ∈ (1± ε0)
|W |
a

for all i ∈ [a]”

B = “d±F [Wi]
(v) ≥

(
c− ε0

) |W |
a

for all v ∈W and i ∈ [a]”.

As E(|Wr|) = |W |
a , using that N � a log a and Chernoff’s inequality, we obtain

P[Ac] ≤ 2a exp
(
− ε2

0|W |
3a

)
= o(1). (2)

Also, as δ0(F ) ≥ cN = c|W | and all but at most 2a vertices were assigned randomly, we have

E(d±(v,Wi)) ≥
c|W | − 2a

a
= c
|W |
a
− 2.

Again using that |W | � a logN together with Chernoff’s inequality, we have

P[Bc] ≤ 2N exp
(
−Θ

(ε2
0|W |
a

))
= o(1). (3)

Combining (2) with (3) we conclude P(A∩B) > 0. Fix a partition W1, . . . ,Wa such that A∩B holds.

To complete the proof, set Fi := F [Wi] for each i ∈ [a]. As A ∩B holds, we have

δ0(Fi) ≥
(
c− ε0

) |W |
a
≥
(
c− 3ε0

)
|V (Fi)| = (3/8 + ε0)|V (Fi)|.

Therefore, using that |V (Fi)| ≥ (1− ε0)|W |/a ≥ N/2a � logN and N is sufficiently large, it follows

from Theorem 13 that Fi contains a Hamilton path Ii from si to ti+1, for each i. All in all, the cycle

C = P1I1P2I2 . . . PaIaP1 (with the connecting edges yisi and ti+1xi+1) gives the desired cycle. This

completes the proof of the lemma.

4.2 Completing ‘many’ edge-disjoint Hamilton cycles

Next we will show how to repeatedly apply Lemma 16 to obtain ‘many’ edge-disjoint Hamilton cycles.

Before stating this result we introduce the following definitions.

Definition 17. Let G be an oriented graph.

1. A path cover of G of size a is a collection of a vertex disjoint directed paths in G which cover

all vertices in V (G).

2. An (a, t)P-family is a collection of t edge-disjoint paths covers of G, each of which is of size at

most a.
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3. Let P(G, a, t) denote the set of all (a, t)P-families in G.

4. Given P ∈ P(G, a, t), let GP denote the oriented subgraph GP =
⋃
P∈PE(P ).

Remark: The above definitions include the possibility of paths of length 0, i.e. isolated vertices.

It may seem odd to refer to the oriented graph G in the definition of GP, as the oriented subgraph

GP only depends on the edges that appear in the paths from P and not on G itself. Our notation is

however intended to reflect a ‘choice’ of P from G. This dependence will be relevant later in proving

Theorem 2, as our eventual count on the number of Hamilton decompositions of G in Theorem 2 will

follow from a lower bound on the number of choices of Pi from certain subgraphs Di of G.

One can think about a path cover P of small size as an ‘almost Hamilton cycle’, in the sense that by

adjoining a small number of edges to P we can obtain a Hamilton cycle. Our aim in the following

lemma is to show how, given ‘many’ edge-disjoint path covers, one can build ‘many’ edge-disjoint

Hamilton cycles.

Lemma 18. Let c > 3/8 and let a, b, n, s, t ∈ N with t + a log n � s � n. Suppose that H is an

n-vertex oriented graph with partition V (H) = U ∪W , where |W | = s, with the following properties:

1. There is P = {Pj |j ∈ [t]} ∈ P(H[U ], a, t);

2. δ0(HP[U ]) ≥ t− b;

3. d±(u,W ) > 2a+ b for all u ∈ U ;

4. The oriented subgraph F = H[W ] satisfies δ0(F ) ≥ c|W |;

Then H contains a family C = {C1, . . . , Ct} of t edge disjoint Hamilton cycles, where each cycle Ci
contains all the paths in Pi as segments.

Proof. For each j ∈ [t], let Pj = {Pj,r}r∈[Rj ] denote the collection of all directed paths in the path

cover Pj . As Pj has size at most a we have Rj ≤ a.

Now we wish to turn each Pj into a Hamilton cycle Cj of H in such a way that

(i) all the paths in Pj are segments of Cj , and

(ii) Ci and Cj are edge-disjoint for all i 6= j.

This will be carried out over a sequence of steps where in step j we have already selected C1, . . . , Cj−1,

and the cycle Cj is chosen by showing that the oriented graph Hj = H \
(⋃

i≤j−1E(Ci)
)

satisfies the

requirements of Lemma 16. Let us fix c > c′ > 3/8.

Suppose that we have already found C1, . . . , Cj−1 and we wish to find Cj . Let xi and yi denote the start

and end vertices of Pj,i, for all i ≤ Rj . First note that by property 3, each vertex u ∈ {xi, yi | i ≤ Rj}
satisfies d±(u,W ) > 2a+ b. By property 2, each vertex v appears as the first vertex of at most b paths

and as the last vertex of at most b paths (otherwise v would have in-degree or out-degree less than

t− b in HP(U)). Therefore, for all u ∈ U we have

d±Hj
(u,W ) ≥ 2a.
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Second, as the edges of less than j Hamilton cycles have been deleted from H, from property 4. we

find that Fj = Hj [W ] satisfies δ0(Fj) ≥ c|W | − j + 1 ≥ c′|W |, using |W | = s� t ≥ j. Lastly, we have

|W | = s� a log n� a log s by hypothesis.

All combined, we have shown that the graph Hj satisfies the conditions of Lemma 16 with N = |W |.
Therefore Lemma 16 guarantees the cycle Cj exists. Thus we can find C1, . . . , Ct, as required.

5 Path covers of oriented graphs

In the previous section we have shown how to extend edge-disjoint path covers to edge-disjoint Hamil-

ton cycles in certain special oriented graphs. In this section we will show how to locate such path

covers, using a number of well-known matching results. The main result of the section is the following:

Lemma 19. Let m, r ∈ N with r ≥ m49/50 and m sufficiently large. Suppose that H is an m-vertex

oriented graph with

r − r3/5 ≤ δ0(H) ≤ ∆0(H) ≤ r + r3/5.

Then, taking a = m/ log4m and t = r −m24/25 logm, the following hold:

1. There is a set S ⊆ P(H, a, t) with |S| ≥ r(1−o(1))rm;

2. For all P ∈ S the oriented subgraph HP satisfies δ0(HP) ≥ r −m/log4m.

5.1 Finding r-factors in bipartite graphs

We show that given a dense bipartite graph G = (A ∪ B,E) which is ‘almost regular’, G contains a

spanning r-regular subgraph (an r-factor), with r very close to δ(G).

Lemma 20. Let α ≥ 1/2, m, ξ ∈ N. Suppose G = (A ∪B,E) is a bipartite graph with |A| = |B| = m

and αm+ ξ ≤ δ(G) ≤ ∆(G) ≤ αm+ ξ + ξ2/m. Then G contains an αm-factor.

Proof. By Theorem 8, to prove the lemma it suffices to show that for all X ⊂ A and Y ⊂ B we have

eG(X,Y ) ≥ αm(|X|+ |Y | −m). (4)

Given such sets X and Y , let x = |X| and y = |Y |. We may assume that x ≤ y, as the case y ≤ x

follows by symmetry. We will make use of the following two trivial estimates for eG(X,Y ):

(i) eG(X,Y ) ≥ x(δ(G) + y −m);

(ii) eG(X,Y ) = eG(X,B)− eG(X,B \ Y ) ≥ δ(G)x−∆(G)(m− y).

The required bound follows from the following cases.

Case 1: x+ y ≤ m. In this case (4) trivially holds.

Case 2: x ≤ y and x ≤ δ(G). In this case, note that since y −m ≤ 0 we obtain

x(δ(G) + y −m) ≥ δ(G)(x+ y −m).
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which by (i) proves (4).

Case 3: x ≤ y, and x > δ(G). Observe that in this case since α ≥ 1/2 we have

x+ y −m ≥ 2δ(G)−m ≥ 2ξ. (5)

Also, from (ii), we have

eG(X,Y ) ≥ δ(G)x−∆(G)(m− y) ≥ αm(x+ y −m) + ξ(x+ y −m)− ξ2

m
(m− y). (6)

Combining (5) with (6) and using that x+ y > m, we conclude that

αm(x+ y −m) + ξ(x+ y −m)− ξ2

m
(m− y) ≥ αm(x+ y −m) + 2ξ2 − ξ2 ≥ αm(x+ y −m),

which again proves (4). This completes the proof.

Using the previous lemma we obtain the following corollary, which shows that by adjoining a small

number of edges to an almost regular bipartite graph, one can obtain a regular bipartite graph.

Corollary 21. Let d,m, ξ ∈ N, d ≤ m/2. Suppose that G = (A ∪ B,E) is a bipartite graph with

|A| = |B| = m and that d − ξ − ξ2/m ≤ δ(G) ≤ ∆(G) ≤ d − ξ. Then there is a bipartite d-regular

graph H = (A ∪B,E′) which contains G as a subgraph.

Proof. Given G as in the lemma, consider the graph Gc = (A ∪ B,E∗) where e ∈ E∗ if and only if

e /∈ E. Clearly m− d+ ξ ≤ δ(Gc) ≤ ∆(Gc) ≤ m− d+ ξ + ξ2/m. Therefore, Lemma 20 guarantees an

(m− d)-regular subgraph S ⊆ Gc. Letting H := Sc completes the proof.

5.2 Small subgraphs contribute many edges to few matchings

Lemma 22. Let m, r ∈ N with r ≥ m24/25 and m sufficiently large. Suppose that G = (A ∪ B,E) is

a bipartite graph with |A| = |B| = m and that E = E1 ∪ E2 is a partition of E. For i ∈ {1, 2} let Hi

be the spanning subgraph of G induced by the edges in Ei. Suppose also that:

1. G is r-regular, and

2. dH2(v) ≤ 2m5/6 for all v ∈ A ∪B.

Then G contains at least (1− o(1))
(
r
e

)m
perfect matchings, each with at most m7/8 edges from E2.

Proof. Set s = 2m5/6 and ` = m7/8. First note that since G is r-regular, by Theorem 11, the number

of perfect matchings in G is at least
(
r
e

)m
. Therefore it is enough to show that at most o(1)(r/e)m

matchings of G contain at least ` edges from E2.

Now given a matching M ⊆ E2 of size `, let G′ be the subgraph of G obtained by deleting the vertices

covered by M . Clearly ∆(G′) ≤ r and |V (G′)| = 2(m− `). By Remark 10 it follows that the number

of ways to complete M into a perfect matching is at most

(8r)
m−`
r

(r
e

)m−`
≤ (8r)m

1/25
(e
r

)` (r
e

)m
.
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However, the number of matchings of size ` in H2 is at most
(
m
`

)
s` ≤ (ems/`)`. Therefore the number

of perfect matchings of G with at least ` edges from E2 is at most

(8r)m
1/25
(e2ms

r`

)` (r
e

)m
≤ (8m)m

1/25
(2e2m1/25

m1/24

)m7/8 (r
e

)m
= o(1)

(r
e

)m
.

This completes the proof of the lemma.

5.3 Decomposing almost regular bipartite graphs into large matchings

In order to prove Lemma 19 in the next subsection we will construct (a, t)P-families P ∈ P(H, a, t) by

carefully combining collections of matchings from certain bipartite graphs. The following definition

will be useful to refer to the key properties required from these matchings.

Definition 23. Let G = (A ∪B,E) be a bipartite graph.

1. Given two integers a and t, we define an (a, t)M-family in G to be a collection of t edge-disjoint

matchings in G, each of which of size at least a.

2. Let M(G, a, t) denote the collection of all (a, t)M-families in G.

3. Given M ∈ M(G, a, t), we let GM denote the spanning subgraph of G consisting of the edge set⋃
M∈ME(M).

Our main aim in the following lemma is to show that if G = (A∪B,E) is an almost r-regular bipartite

graph with |A| = |B|, then for many elements M ∈ M(G, a, t), where a ≈ |A| and t ≈ r, the graph

GM is also almost regular.

Lemma 24. Let ε > 0 and m, r ∈ N with m sufficiently large and 2m24/25 ≤ r ≤ (1− ε)m/2. Suppose

that G = (A ∪B,E) is a bipartite graph with |A| = |B| = m and r ≤ δ(G) ≤ ∆(G) ≤ r + r2/3. Then,

taking t = r −m24/25 and a = m−m7/8, the following hold:

1. There is M⊂M(G, a, t), with |M| = r(1−o(1))rm;

2. For each M ∈M, the subgraph GM has minimum degree at least t− 2m5/6.

Proof. Set ξ = m5/6 and r′ = r+ ξ+ ξ2/m. Then, using that r2/3 ≤ m2/3 = ξ2/m, combined with the

hypothesis of the lemma, we have

r′ − ξ − ξ2/m = r ≤ δ(G) ≤ ∆(G) ≤ r + r2/3 = r′ − ξ.

Thus by Corollary 21 there is an r′-regular graph H = (A ∪B,E′) which contains G as a subgraph.

Set E1 := E(G) and E2 := E(H) \ E1. By the above, we have

dE2(v) ≤ r′ − r = ξ +
ξ2

2m
≤ 2m5/6 (7)

for all v ∈ A ∪B.

We will now show, using Lemma 22, that there are many ways to build a sequence (M1, . . . ,Mt) of

edge-disjoint perfect matchings in H, where each matching contains at least a edges from E1. To do
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this, begin by setting H0 := H. Having selected M1, . . . ,Mi−1, set Hi := H \
(
∪j<i E(Mj)

)
and note

that Hi is (r′− i+ 1)-regular. Since r′− i ≥ r− t ≥ m24/25 and by (7), we can apply Lemma 22 to Hi

to find at least (1− o(1))
(
r′−i+1

e

)m
perfect matchings of Hi with at least a edges in E1. Multiplying

all this estimates gives at least

t∏
i=1

(1− o(1))
(r′ − i+ 1

e

)m
= r(1−o(1))tm = r(1−o(1))rm

possible choices for (M1, . . . ,Mt).

To complete the proof, simply note that each sequence (M1, . . . ,Mt) above gives rise to an (a, t)M-

family of G, given by M = {Mi ∩ E1 : i ∈ [t]}. As each M can occur at most t! times in this way,

these sequences give rise to M⊂M(G, a, t) with

|M| ≥ 1

t!
× r(1−o(1))rm = r(1−o(1))rm.

Lastly, for each such (a, t)M-family M, the minimum degree of GM is at least t− 2m5/6 by (7). This

completes the proof of the lemma.

5.4 Path covers in almost regular oriented graphs

We are now ready to complete the proof of Lemma 19.

Proof of Lemma 19. Let b = 2 log4m and select a partition V (H) = V1∪ . . .∪Vb uniformly at random,

where |Vi| ∈ {bm/bc, dm/be} holds for all i ∈ [b]. For convenience we will assume |Vi| = m′ := m/b

for all i ∈ [b], although this assumption is easily removed. By Chernoff’s inequality, with probability

1− o(1) we find that for all v ∈ V (H) and j ∈ [b] we have

d±H(v, Vj) = d±H(v)/b± 4
√
m′ logm = d± d2/3/2, (8)

where d = r/b. Fix a choice of partition such that (8) holds.

Now consider the complete directed graph on b vertices, denoted by Db (this graph contains both

directed edges (u, v) and (v, u) for all pairs of distinct vertices u, v). By a result of Tillson [19], the

complete digraph Db has an edge decomposition into b directed Hamilton paths Q1, . . . , Qb. Each such

path Qi = vi1 . . . vib naturally corresponds to an oriented subgraph Hi of H consisting of all edges

in Bij :=
−→
H [Vij , Vij+1 ] for j ∈ [b − 1]. As the paths {Qi}i∈[b] are edge-disjoint, so are the oriented

subgraphs {Hi}i∈[b]. Note that as Bij only consists of edges oriented from Vij to Vij+1 , we can view

Bij as a bipartite graph by ignoring the orientation of its edges.

Our aim now is to show that each oriented graph Hi has many path covers. Let us fix such a Hi and

assume without loss of generality that Hi is given by the path Qi = v1 . . . vb, so that Bij =
−→
H [Vj , Vj+1]

for all j ∈ [b− 1]. The following observation is key:

Observation 25. Suppose that Mj is a matching of size at least m′ − ` in Bij for all j ∈ [b − 1].

Then ∪Mj is a path cover of Hi (perhaps with some paths of length 0). Moreover, as ∪Mj has at least

(m′ − `)(b− 1) edges and Hi has m vertices, such path covers are of size at most m′ + b`.
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We now exploit this observation using Lemma 24. Note that d − d2/3/2 ≥ 2m24/25. Secondly, by (8)

for all j ∈ [b− 1] we have

d− d2/3/2 ≤ δ(Bij) ≤ ∆(Bij) ≤ d+ d2/3/2.

Therefore, we can apply Lemma 24 to Bij , taking a′ = m′ − (m′)7/8 and t′ = d − d2/3/2 − (m′)24/25,

to get

(a) Mij ⊆M(Bij , a
′, t′) with |Mij | = d(1−o(1))dm′ ;

(b) For all Mij ∈Mij , letting B := Bij , the graph BMij has minimum degree at least t′ − 2(m′)5/6.

Let us now fix Mij ∈ Mij for all j ∈ [b − 1]. As each Mij consists of t′ edge-disjoint matchings, by

Observation 25 we can use {Mij}j∈[b−1] to construct t′ edge-disjoint path covers of Hi, each of size at

most m′+b(m′)7/8 ≤ n/ log4 n = a. Furthermore, it is easy to see that different choices of {Mij}j∈[b−1]

give rise to a different collection of path covers. Combined with (a), this gives at least∏
j∈[b−1]

|Mij | ≥ d(1−o(1))(b−1)dm/b = d(1−o(1))dm

distinct (a, t′)P -families of Hi.

Now we have partitioned H into b edge-disjoint oriented graphs H1, . . . ,Hb, each of which consists

of at least d(1−o(1))dm distinct (a, t′)P -families. Further, distinct choice of such families from each Hi

yield distinct (a, bt′)P -families of H. Taking t = bt′ ≥ r − 2b(m′)24/25 ≥ r −m24/25 logm, it follows

that there is S ⊂ P(H, a, t) with

|S| ≥ d(1−o(1))dmb = d(1−o(1))rm = r(1−o(1))rm.

Here we have used that b = 2 log4m, that d = r/b and that r ≥ d/2b, giving b−rm = r−o(rm).

To complete the proof of the lemma, it only remains to prove the following:

Claim 26. For each P ∈ S we have δ0(HP) ≥ r −m/ log4m.

To see this, simply note that by construction

E(HP) =
⋃
i,j

E(BMij )

for some choices of Mij ∈ Mij where i ∈ [b] and j ∈ [b − 1]. Given v ∈ Vk say, the out-edges of v in

HP are therefore those out-edges of v in BMij , where ij = k. However, ij = k only occurs when an

out-edge of vk appears in Qi, which happens exactly b − 1 times, since Q1, . . . , Qb forms a Hamilton

path decomposition of Db. Combined with (b), t′ = d− d2/3/2− (m′)24/25 and d = r/b, we find

d+
HP

(v) ≥ (b− 1)(t′− 2(m′)5/6) ≥ bt′− t′− 2b(m′)5/6 ≥ r− t′− 4b(m′)24/25 ≥ r− 2m′ = r−m/ log4m.

As an identical argument lower bounds the d−HP
(v), this completes the proof of the claim, and hence

the proof of the lemma.
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6 Partitions of oriented graphs

In this final section before the proof of Theorem 4 and Theorem 2 we prove a technical lemma which

will allow us to decompose oriented graphs as given in Theorem 4 into smaller subgraphs, each of

which satisfy the hypothesis of Lemma 18 and Lemma 19.

Lemma 27. Let β ≥ α > ε > 0, let K, d, n ∈ N, with n sufficiently large, d = αn and K = log n.

Suppose that G is an oriented graph on n vertices with δ0(G) ≥ βn and that D is a d-factor of G.

Then there are K3 edge-disjoint spanning subgraphs H1, . . . ,HK3 of G with the following properties:

1. For each Hi there is a partition V (G) = Ui ∪Wi with |Wi| = n/K2 ± 1;

2. Letting Di = Hi[Ui] for all i, then Di ⊆ D and for some r ≥ (1− 2ε)d/K3 we have

r − r3/5 ≤ δ0(Di) ≤ ∆0(Di) ≤ r + r3/5;

3. Letting Ei = Hi[Ui,Wi] we have d±Ei
(u,Wi) ≥ ε|Wi|/4K for all u ∈ Ui;

4. Letting Fi = Hi[Wi] we have δ0(Fi) ≥ (β − ε)|Wi|.

Proof. To begin, select K partitions of V (G) uniformly and independently at random where, for each

k ∈ [K], we partition V (G) into K2 sets, V (G) =
⋃
`∈[K2] Sk,` with |Sk,`| ∈

{
bn/K2c, dn/K2e

}
. Note

that for each k ∈ [K] and v ∈ V (G) there exists a unique ` := `(k, v) ∈ [K2] for which v ∈ Sk,`. In

particular, every v ∈ V (G) belongs to exactly K sets Sk,`.

Second, observe that by Chernoff’s inequality for a hypergeometrical distribution (see Remark 6),

letting s = bn/K2c, with probability 1− nK3e−ω(logn) = 1− o(1) we have

d±D(v, Sk,`) = α|Sk,`| ± 4
√
s log n and d±G(v, Sk,`) = d±G(v)|Sk,`|/n± 4

√
s log n (9)

for all v ∈ V (G), k ∈ [K] and ` ∈ [K2]. In particular, as |Sk,`| = s± 1 > n/2K2 � log n, for all k and

` we have

δ0(G[Sk,`]) ≥ β|Sk,`| − 4
√
s log n ≥ (β − ε/2)|Sk,`|. (10)

For each v ∈ V (G) and k ∈ [K], let X+(v, k) denote the random variable which counts the number of

w ∈ N+
G (v) such that w ∈ Sk,`(k,v) ∩ Sk′,`(k′,v) for some k′ 6= k. Define X−(v, k) similarly.

Note that for σ ∈ {+,−} we have

E[Xσ(v, k)] ≤ K
( n

K4

)
=

n

K3
= o(s).

By Chernoff’s inequality, with probability 1−Kne−Θ(n/K3) = 1− o(1), for all k ∈ [K] and v ∈ V (G)

we have

Xσ(v, k) ≤ 2n

K3
= o(s). (11)

Lastly, for σ ∈ {+,−} and v ∈ V (D) we define the random variable Y σ(v) to be the number of vertices

u ∈ Nσ
D(v) with u ∈ Sk,`(k,v) for some k. For all σ ∈ {+,−} and v ∈ V (D) we have

b := E [Y σ(v)] ≤ Ks.
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Note that, since all the vertices of D have the same in/outdegrees, the value of E [Y σ(v)] is indeed

independent of v. By Proposition 7, with probability 1 − 2nKnKe−(2
√
K2s logn)2/3Ks = 1 − o(1), for

all σ ∈ {+,−} and v ∈ V (D) we have

Y σ(v) = b± 2
√
K2s log n. (12)

Thus, with positive probability a collection of partitions satisfy (9), (11) and (12). Fix such a collection.

We relabel {Sk,` | k ∈ [K] and ` ∈ [K2]} as {W1, . . . ,WK3} (arbitrarily). Also set Fi = G[Wi] \ Ri,
where Ri is the set of all edges which appear in more than one Wi. From (10) and (11), for each

i ∈ [K3] we obtain

δ0(Fi) ≥ (β − ε)|Wi|.

Next, let D′ = D \ (
⋃
iE(G[Wi])). As D is d-regular, by (12), we have that for all σ ∈ {+,−} and

v ∈ V (D)

dσD′(v) = dσD(v)− Y σ(v) = d− b± 2
√
K2s log n.

To complete the proof we partition the edges of D′ into further oriented subgraphs

{Di}i∈[K3] and {Ei}i∈[K3].

Each Di will be an oriented subgraph with V (Di) = V (D) \Wi := Ui, and each Ei will consist of

some directed edges between Ui and Wi. To obtain these graphs we will partition the edges at random

as follows: Suppose that e = uv ∈ E(D′), and let Iu = {i ∈ [K3] | u ∈ Wi}. Similarly, define Iv.

By construction, |Iu| = |Iv| = K and Iu ∩ Iv = ∅. Now, we randomly and independently assign each

e ∈ E(D′) to a subgraph according to the following distribution:

• for i /∈ Iu ∪ Iv, we assign e to Di with probability 1−ε
K3−2K

;

• for i ∈ Iu ∪ Iv, we assign e to Ei with probability ε
2K .

Note that the probability for e to being assigned to some subgraph is 1.

By Chernoff’s inequality, with probability at least 1 − nK3e−Θ(
√
n logn)2/n − nK3e−Θ( s

K
) = 1 − o(1)

the resulting oriented graphs satisfy

(a) r − r3/5 ≤ r − 4
√
n log n ≤ δ0(Di) ≤ ∆0(Di) ≤ r + 4

√
n log n ≤ r + r3/5, where r := (1−ε)(d−b)

K3−2K
≥

(1−2ε)d
K3 ;

(b) d±Ei
(v,Wi) ≥ ε|Wi|/4K for all v ∈ Ui.

Finally, taking Hi = Di ∪ Ei ∪ Fi for each i ∈ [K3], it is easy to check that these graphs satisfy the

requirements.

7 Proof of Theorem 4

We are now ready to complete the proof of Theorem 4.
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Proof of Theorem 4. Let G be an oriented graph as in the assumptions of the theorem. Let d :=

reg(G) = αn and let D ⊆ G be a d-factor of G. From Theorem 12, we find that G contains (c− 3/8)n

edge-disjoint Hamilton cycles, and so α ≥ c− 3/8 > 0.

First, we apply Lemma 27 to G and D, with β = c, α and ε/4 in place of ε. Setting K = log n, this

gives edge-disjoint subgraphs H1, . . . ,HK3 of G with the following properties:

1. For each Hi there is a partition V (G) = Ui ∪Wi with |Wi| = n/K2 ± 1;

2. Letting Di = Hi[Ui], for some r ≥ (1− ε/2)d/K3, we have

r − r3/5 ≤ δ0(Di) ≤ ∆0(Di) ≤ r + r3/5;

3. Letting Ei = Hi[Ui,Wi] we have d±Ei
(u,Wi) ≥ ε|Wi|/4K for all u ∈ Ui;

4. Letting Fi = Hi[Wi] we have δ0(Fi) ≥ (β − ε)|Wi|;

Secondly, by property 2. above we can apply Lemma 19 to each oriented graph Di. This gives

Pi ∈ P(Di, n/ log4 n, r − n/ log4 n) which satisfies

δ0(DPi) ≥ r − n/ log4 n. (13)

Lastly, apply Lemma 18 to Pi for each i. Taking t = r − n/ log4 n and a = b = n/ log4 n and

s = |Wi| = n/K2 ± 1, it is easy to check that the conditions of Lemma 18 hold using (13) and

properties 3. and 4. above. This gives a collection Ci := {Ci1, . . . , Cit} of edge-disjoint Hamilton

cycles in Hi.

To complete the proof, set C :=
⋃
i Ci. Since the Hi are edge-disjoint, together with property 3., we

find that C consists of

K3t ≥ (1− ε/2)K3r ≥ (1− ε)d

edge-disjoint Hamilton cycles of G. This completes the proof.

8 Proof of Theorem 2

Before proving Theorem 2 let us introduce a final convenient definition.

Definition 28. Given an oriented graph H, a collection of t edge-disjoint Hamilton cycles {C1, . . . , Ct}
of G is called an (H, t)C-family. Let C(H, t) denote the set of all (H, t)C-families of H.

We are now ready for the proof of Theorem 2.

Proof of Theorem 2. Let c > 3/8 be fixed and d = cn. We would like to show that given any ε > 0

and a large enough n, every d-regular oriented graph G on n vertices satisfies∣∣∣C(G, d)
∣∣∣ ≥ n(1−ε)dn.

Let K = log n and α = ε/4. Our proof proceeds in five steps.

Step 1. Removing a δ-absorbing subgraph from G.
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By Theorem 15, there exists δ > 0 such that G contains a δ-absorber subgraph A, where A is a-regular,

with a ≤ αn. Fix such a choice of A and let G0 := G \A.

Step 2. Partitioning G0.

Note that G0 is d′ := cn − a regular with β := d′/n > 3/8. Therefore, taking D = G and ε0 = ε/10,

applying Lemma 27, one can find K3 edge-disjoint spanning subgraphs H1, . . . ,HK3 of G0 satisfying:

1. For each Hi there is a partition V (G) = Ui ∪Wi with |Wi| = n/K2 ± 1;

2. Letting Di = Hi[Ui], with r ≥ (1− 2ε0)d′/K3, we have

r − r3/5 ≤ δ0(Di) ≤ ∆0(Di) ≤ r + r3/5;

3. Letting Ei = Hi[Ui,Wi] we have d±Ei
(u,Wi) ≥ ε0|Wi|/4K for all u ∈ Ui;

4. Letting Fi = Hi[Wi] we have δ0(Fi) ≥ (β − ε0)|Wi|.

Step 3. Showing that for some t = r − o(r) and for every i ∈ [K3] the set C(Hi, t) is large.

To this end, let us first apply Lemma 19 to each of the Dis (note that by Property 2 above, the

assumptions are fulfilled, and that |Ui| = m = (1− o(1))n). It thus follows that for every i we have a

collection

Pi ⊆ P(Di, n/ log4 n, r − n/ log4 n)

which satisfies

|Pi| ≥ r(1−o(1))rn,

such that δ0(DPi) ≥ r − n/ log4 n for all Pi ∈ Pi.
Therefore, by Properties 3, 4 and the lower bound on δ0(DPi), the hypothesis of Lemma 18 apply to

Hi and Pi, taking a = b = n/ log4 n, t = r−n/ log4 n and s = |Wi| = n/K2±1. This lemma allows us

to turn Pi into a collection of t = r − n/ log4 n edge-disjoint Hamilton cycles. Noting that we fix the

Wi sets throughout the proof, we can trivially recover the path cover used to build each of the cycles.

Therefore, for all i ∈ [K3] we have

|C(Hi, t)| ≥ |Pi| ≥ r(1−o(1))rn. (14)

Step 4. Showing that G0 has n(1−ε)dn ‘almost Hamilton decompositions’.

To see this, note that if we pick Ci ∈ C(Hi, t) for all i, then C =
⋃
i Ci ∈ C(G0,K

3t). Therefore, by

(14), for t′ = K3t we conclude that∣∣C(G0, t
′)
∣∣ ≥ r(1−o(1))rnK3 ≥ d(1−ε/5)d′n ≥ n(1−ε/4)(1−α)dn ≥ n(1−ε/2)dn. (15)

Step 5. Completing every C ∈ C(G0, t
′) to a Hamilton decomposition of G.

Let C ∈ C(G0, t
′) and note that G′ = G0 \ C is a b-regular oriented graph with b = o(n). Since

A := G \ G0 is a δ-absorber, and b < δn, it follows from Theorem 15 that A ∪ G′ has a Hamilton

decomposition C′. But then C ∪ C′ is a Hamilton decomposition of G. Lastly, note that although
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different choices of C ∈ C(G0, t
′) may give rise to the same Hamilton decomposition in this way, it is

easy to see that each such decomposition occurs at most
(
d
t′

)
≤ 2n times. By (15), this gives

|C(G, d)| ≥ |C(G0, t
′)|/2n ≥ n(1−ε)dn.

This completes the proof.

9 Concluding remarks

In this paper we have given bounds on the number of Hamilton decompositions of dense regular

oriented graphs. Theorem 4 shows that if G is an r-regular n-vertex oriented graph, with r = cn for

some fixed c > 3/8, then it has r(1+o(1))rn Hamilton decompositions. As indicated in the Introduction

this bound is tight for every such graph, up to the o(1)-term in the exponent.

We believe that such oriented graphs should in fact have
(
(1 + o(1)) r

e2

)rn
Hamilton decompositions.

This would agree with the more precise upper bound obtained from the Minc conjecture in the In-

troduction. To prove this seems to require a version of Theorem 15 which can be applied to oriented

graphs with sublinear density. In this respect, it would be very interesting to obtain an alternative

proof of Kelly’s conjecture that does not make use of regularity, as it seems likely to lead to such a

theorem.
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